

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PURE MATHEMATICS

TIME ALLOWED: THREE HOURS

MAXIMUM MARKS = 100

- NOTE: (i) Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and ONE Question from SECTION-C. ALL questions carry EQUAL marks.
 - (ii) All the parts (if any) of each Question must be attempted at one place instead of at different places.
 - (iii) Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.
 - (iv) No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.
 - (v) Extra attempt of any question or any part of the attempted question will not be considered.
 - (vi) Use of Calculator is allowed.

SECTION-A

- **Q.1.** (a) Let Ψ be a homomorphism of group G into group \tilde{G} with kernel K, prove that K is a normal subgroup of G.
 - (b) Prove that if H and K are two subgroups of a group G, then HK is a subgroup of G (10) (20) if and only if HK=KH.
- Q.2. (a) Find elements of the cyclic group generated by the permutation. (10)

$$\alpha = \begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 \\ 3 & 4 & 5 & 2 & 6 & 1 \end{pmatrix}$$

- Verify that the polynomials $2-x^2$, x^3-x , $2-3x^2$ and $3-x^3$ form a basis for the set $P_3(x)$; the set of all polynomials of degree three. Also express the vectors $1+x^2$ and $x+x^3$ as a linear combination of these basis vectors.
- Q.3. (a) Let V be the real vector space of all function from R to R. Show that $\{\cos^2 x, \sin^2 (10) x, \cos 2x\}$ is linearly dependent while $\{\cos x, \sin x, \cosh x, \sinh x\}$ are linearly independent.
 - **(b)** Solve the system of linear equations: (10) (20)

$$x_1 - 2x_2 - 7x_3 + 7x_4 = 5$$

$$-x_1 + 2x_2 + 8x_3 - 5x_4 = -7$$

$$3x_1 - 4x_2 - 17x_3 + 13x_4 = 14$$

$$2x_1 - 2x_2 + 11x_3 + 8x_4 = 7$$

SECTION-B

Q.4. (a) If
$$f(x,y) = x^2 \tan^{-1} \left(\frac{y}{x}\right) - y^2 \tan^{-1} \left(\frac{x}{y}\right)$$
.

Show that $\frac{\partial^2 f}{\partial y \partial x}(x,y) = \left(\frac{x^2 - y^2}{x^2 + y^2}\right)$ (10)

(b) Evaluate
$$\int_{0}^{6} f(x) dx$$
 where $f(x) = \begin{cases} x^{2}whenx < 2\\ 3x - 2whenx > 2 \end{cases}$ (10) **(20)**

PURE MATHEMATICS

Q.5. (a) Let
$$I_n = \int_0^\infty x^n e^{-x} dx$$
 where n is an integer. Prove that $I_n = n I_{n-1}$ Hence show that $I_n = n!$

(b) i. Write
$$r = \frac{8}{2 - \cos \theta}$$
 in rectangular coordinates. (10) (20)
ii. Write $x^4 + 2x^2y^2 + y^4 - 6x^2y + 2y^3 = 0$ in polar coordinates.

- **Q.6.** (a) Evaluate $\iint_D dy dx$ and $\iint_D dx dy$ where *D* is the region bounded by the y-axis, the lines x=2 and the curve e^x .
 - **(b)** Investigate the curve $y = \frac{x^3 x}{3x^2 + 1}$ for points of inflexion. (10)

SECTION-C

Q.7. (a) Sum the series
$$1 + \frac{1}{2}\cos\theta + \frac{1.3}{2.4}\cos 2\theta + \frac{1.3.5}{2.4.6}\cos 3\theta + \dots$$
 (10)

(b) Prove that
$$\cos \frac{\pi}{7} - \cos \frac{2\pi}{7} + \cos \frac{3\pi}{7} = \frac{1}{2}$$
 (10) **(20)**

Q.8. (a) Construct the analytic function f whose real part is $U = x^3 - 3xy^2 + 3x + 1$ (10)

(b) Evaluate
$$\int_C \frac{dz}{z^2 + 2z + 2}$$
 Where C is a square with corners (10) (20) $(0,0),(-2,0),(-2,-2)$ and $(0,-2)$.
