

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2020 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

PURE MATHEMATICS

		OWED: THREE HOURS	MAXIMUM M	
NOTE: (i)		Attempt FIVE questions in all by selecting TWO Questions each from SECTION-A&B and ONE Question from SECTION-C. ALL questions carry EQUAL marks. All the parts (if any) of each Question must be attempted at one place instead of at different		
	(11)	All the parts (if any) of each Question places.	i must be attempted at one place instead of	f at differen
		Write Q. No. in the Answer Book in ac		
	(iv)	No Page/Space be left blank between be crossed.	the answers. All the blank pages of Answe	er Book mus
	(v) (vi)		art of the attempted question will not be cons	sidered.
		SECT	<u>FION-A</u>	
Q. 1.	(a)	Let G and G' be two groups and $f : G$ -following:	$\rightarrow G'$ be a homomorphism then prove the	(10)
		(i) $f(e) = e'$ where e and e' a	are the identities of ${\it G}$ and ${\it G}'$ respectively	
		(iii) $f(a^{-1}) = [f(a)]^{-1}, \forall a \in C$	Ĵ	
	(b)	Prove that every homomorphic image of	of a group is isomorphic to some quotient	(10) (20
		group.		
Q. 2.	(a)	A ring <i>R</i> is without zero divisor if and	only if the cancellation law hold	(10)
2. 2.	(a) (b)	Prove that arbitrary intersection of sub-	•	(10) (20
	(0)	Trove that aroutary intersection of such	ings is a subling.	(10) (20
Q. 3.	(a)	Let $T: R^3 \longrightarrow R^3$ be the linear trans	formation defined by	(10)
		$T(x_1, x_2, x_3) = (x_1 - x_2, x_1 + x_3, x_2 + $ of T.	x_3). Find a basis and dimension of Range	
	(b)	Prove that every finitely generated vect	or space has a basis.	(10) (20
		<u>SEC</u>	<u>rion-b</u>	
). 4.	(a)	Find the critical residue of $f(x) - x^3$	-12x-5 and identify the open intervals	(10)
C		on which f is increasing and on which		
		on which j is increasing and on which j	j is decreasing.	
	(b)	Find the horizontal and vertical asympt	otes of the graph of $f(x) = -\frac{8}{x^2 - 4}$	(10) (20)
			л т	
Q. 5.	(a)	Calculate $\int \frac{-2x+4}{(x^2+1)(x-1)^2} dx.$		(10)
	(b)	Find $\frac{\partial w}{\partial w}$ at the point $(x, y, z) = (2, -1, 1)$) if $w = x^2 + y^2 + z^2$, $z^3 - xy + yz + y^3 = 1$	(10) (20
	(U)			
		and x and y are the independent variabl	es.	
			2	

- **Q. 6.** (a) Determine the focus, vertex and directrix of the parabola $x^2 + 6x 8y + 17 = 0$ (10)
 - (b) Find polar coordinates of the point *p* whose rectangular coordinates are (10) (20) $(3\sqrt{2}, -3 \sqrt{2})$

SECTION-C

Q.7. (a) Show that
$$(\cos\theta + i\sin\theta)^n = \cos(n\theta) + i\sin(n\theta)$$
 for all integers *n*. (10)

(b) Find the n, nth roots of unity. (10) (20)

Q. 8. (a) Find the Taylor series generated by
$$f(x) = \frac{1}{x}$$
 at $a = 2$. Where, if anywhere, (10) does the series converge to $\frac{1}{x}$?

(b) Show that the p-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$, (*p* a real constant) converges if p > 1, and (10) (20) diverges if P < 1
