

FEDERAL PUBLIC SERVICE COMMISSION **COMPETITIVE EXAMINATION-2016** FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

PURE MATHEMATICS

PURE MATHEMATICS				
TIME ALLOWED: THREE HOURS			MAXIMUM MARKS = 100	
			electing TWO Questions each from SECTION-A&B and	
	(ii)	ONE Question from SECTION-C. ALL questions carry EQUAL marks. (ii) All the parts (if any) of each Question must be attempted at one place instead of at different parts.		
	(;;;)	places.		
		i) Candidate must write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper. v) No Page/Space be left blank between the answers. All the blank pages of Answer Book must		
	(=1)	be crossed.		
	(v) (vi)	Extra attempt of any question or any part of the attempted question will not be considered. Use of Calculator is allowed.		
SECTION-A				
Q. 1.	(a)	Prove that the normaliser of a subset of a	a group G is a Subgroup of G .	(10)
	(b)	Let A be a normal subgroup and B a s $<$ A , B $>$ $=$ AB	ubgroup of a group G . Then prove that	(10) (20)
Q. 2.	(a)	Let a be a fixed point of a group G and by $I_a(g) = aga^{-1}$ where $g \in G$.	consider the mapping $I_a: G \rightarrow G$ defined	(10)
	(b)	Show that I_a is an automorphism of G . A Let M_2 (R) = $ \left\{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} : a, b, c, d \in \mathbb{R} \right\} $	Also show that for $a, b \in G$, $I_a.I_b=I_{ab}$ $R $ be the set of all 2×2 matrices with	(10) (20)
		real entries. Show that ($M_2(R)$, +, \cdot) for a field?	rms a ring with identity. Is ($M_2(R)$, +, ·)	
Q. 3.	(a)	Let $T: X \rightarrow Y$ be a linear transformation space Y . Prove that Kernal of T is a subspace Y .	<u> </u>	(10)
	(b)	Find the value of $\boldsymbol{\lambda}$ such that the system	of equations	(10) (20)
		$x + \lambda y + 3z = 0$		
		$4x + 3y + \lambda z = 0$		
		2x + y + 2z = 0		
		has non-trivial solution.		

SECTION-B

- **Q. 4.** (a) Using $\eth \in$ definition of continuity, prove that the function Sin^2x is continuous (10)for all $x \in R$.
 - (b) Find the asymptotes of the curve $(x^2-y^2)(x+2y) + 5(x^2+y^2) + x+y = 0$ **(10) (20)**
- (a) Prove that the maximum value of $\left(\frac{1}{x}\right)^x$ is $e^{1/e}$. Q. 5. (10)

PURE MATHEMATICS

- **Q. 6.** (a) Find the area enclosed between the curves $y=x^3$ and y=x. (10)
 - (b) A plane passes through a fixed point (a, b, c) and cuts the coordinate axes in (10) (20) A,B,C. Find the locus of the centre of the sphere OABC for different positions of the plane, O is the origin.

SECTION-C

- Q. 7. (a) Determine P(z) where (10) $P(z) = (z z_1)(z z_2)(z z_3)(z z_4) \text{ with } z_1 = e^{i\pi/4}, z_2 = z_1, z_3 = -z_1 \text{ and } z_4 = -\overline{z_1}.$
 - (b) Find value of the integral $\int_{c} (z-z_0)^n dz$, (*n* any integer) along the circle *C* (10) (20)with centre and z_0 radius *r*, described in the counter clock wise direction.
- Q. 8. (a) Use Cauchy Integral Formula to evaluate $\int_{c}^{c} \frac{c \circ h \, \overline{z} + s \, i \, 2 \, \overline{z}}{z \frac{\overline{z}}{2}/2} d\overline{z}$ along the simple closed counter C: |z| = 3 described in the positive direction.
 - **(b)** State and prove Cauchy Residue Theorem. (10) **(20)**
