

WWW.THECSSCANDIDATE.COM

FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Roll Number

Physics, Paper I

	E ALL(Γ-I(MC	OWED: THREE HOURSPART-I (MCQS)MAXIMUM MACQS):MAXIMUM 30 MINUTESPART-IIMAXIMUM MA						
NOTI	E: (i) (ii) (iii)	Part-II is to be attempted on the separate Answer Book . Attempt ONLY FOUR questions from PART-II . ALL questions carry EQUAL ma All the parts (if any) of each Question must be attempted at one place instead of a		ent				
	(iv)	places. Write Q. No. in the Answer Book in accordance with Q. No. in the Q.Paper.						
	(v)	No Page/Space be left blank between the answers. All the blank pages of Answer Book must be crossed.						
	(vi) (vii)	vi) Extra attempt of any question or any part of the question will not be considered.						
		<u>PART – II</u>						
Q. 2.	(a)	Describe Einstein postulates of special theory of Relativity. Express the difference between the special and the general theories of Relativity.	e (10)					
	(b)	Establish the energy-mass relationship and give its significance.	(10)	(2				
Q. 3.	(a)	Differentiate between Fermi-Dirac, Bose-Einstein and Maxwell Statistics. Give application of each.	(10)					
	(b)	Draw a labelled diagram of a nuclear reactor and give significance of each part.	(10)	(2				
Q. 4.	(a)	Distinguish between the linear and angular momentum. Express Newton' second law in terms of the linear and angular motion.	s (10)					
	(b)	Discuss the acceptor and rejecter electronic circuits.	(10)	(2				
Q. 5.	(a)	Describe and explain the Miller indices. Recognize the symbols <111>, [010] (111).	, (10)					
	(b)	Discuss the closest packed crystal structures.	(10)	(2				
Q. 6.	(a)	Can you imagine a three dimensional diffraction grating? Describe in detail.	(10)					
	(b)	Justify the dual nature of light with elaborative examples.	(10)	(2				
Q. 7.	(a)	State and explain the three laws of Thermodynamics.	(10)					
	(b)	What is a heat engine? Determine the efficiency of the engine if it takes 10,000 J of heat and delivers 2000 J of work per cycle.	(10)	(2				
Q. 8.	Wr	ite notes on any TWO of the following: (10 each))	(20)				
		(a) Mickelson-Morley experiment and its latest usage in a recent Nobel award.						
		(b) Unification of forces and Abdus Salam contribution.						
		(c) An essay on Large Hadron Partical Accelerator.						

(c) An essay on Large Hadron Partical Accelerator.

WWW.THECSSCANDIDATE.COM FEDERAL PUBLIC SERVICE COMMISSION COMPETITIVE EXAMINATION-2021 FOR RECRUITMENT TO POSTS IN BS-17 UNDER THE FEDERAL GOVERNMENT

Physics, Paper II

		Physic	cs, Paper II		
	CALLO C-I(MC	OWED: THREE HOURS CQS): MAXIMUM 30 MINUTES	PART-I (MCQS) PART-II	MAXIMUM MAR MAXIMUM MAR	
NOTI	E: (i) (ii) (iii) (iv) (v) (v) (vi) (vi)	Part-II is to be attempted on the separ Attempt ONLY FOUR questions from All the parts (if any) of each Questic places. Write Q. No. in the Answer Book in a No Page/Space be left blank between be crossed. Extra attempt of any question or any p Use of Calculator is allowed.	n PART-II . ALL question must be attempted at accordance with Q. No. in the answers. All the bl	t one place instead of at in the Q.Paper. ank pages of Answer B	different
		PA	<u>RT – II</u>		
Q. 2.	(a)	Consider an infinitely long cy a , and outer radius b , and has line of charge density λ is pla determine the electric field inten and (ii) $r > b$.	a uniform volume ch aced along the axis	arge density ρ. If a of the shell then	(8)
	(b)	Determine the energy density for	a capacitor.		(6)
	(c)	Discuss the Lorentz force.			(6) (20)
Q. 3.	(a) (b) (c)	Find the magnetic energy density Sate and explain the Lenz's law. Why is the work done by a magnetic sero?	C C		(10) (6) (4) (20)
Q. 4.	(a)	Describe the properties of each of their dual nature.	f, an electron and the	light, that show	(8) (6)
	(b) (c)	State and explain the de Broglie h Metals A, B and C have work fur light of wavelength 320nm is incic (i) Which metals exhibit phot (ii) Maximum kinetic energy of	actions 2.2eV, 3.6eV and lent on these, then find toolectric effect?		(6) (20
Q. 5.	(a)	Determine the transmission co-efficient on a rectangular barrier, so	-		(14)
		$V(x) = \begin{cases} +V_0 \\ 0 \end{cases}$	for - a < x < a $for x > a$		

- (b) For an operator \hat{A} , we know $[\hat{H} \hat{A}] = 0$, where \hat{H} is the Hamiltonian (4) operator, what can we conclude about the eigen states of \hat{A} and the $\langle \hat{A} \rangle$?
- (c) Give two examples for the operator *A*, given in part (b) above. (2) (20)

PHYSICS, PAPER-II

Q. 6.	(a) Describe the electrical conduction in different types of solids in terms of band theory.				(8)				
	(b)		in the crystal structure of diamond.		(6)				
	(c)	Find of 25°	the carrier concentration of electrons in Sili C.	con at a temperature	(6) (20)				
Q. 7.	(a)	What factors contribute to the stability of a nucleus? Draw and explain the plot of neutron number N versus atomic number Z for stable nuclei.							
	(b)	lear reactor.	(6)						
	(c)	The stable isotope of potassium is 19 K, what kind of radioactivity do you (4 expect from 18 K? Give reasons.							
Q. 8.	Write	notes c	on any TWO of the following:	(10 marks each)	(20)				
		(a)	Poynting Vector						
		(b)	Fusion in stars						
		(c)	MOSFET						
